
IEEE Instrumentation and Measurement
Technology Conference
Budapest, Hungary, May 21-23,2001.

On Generators for Embedded Information Systems

Gabor ELarsai, Akos Ledeczi, Miklos Maroti
Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN 37235, USA
Phone: +1615 343-7460, Fax: +1615 343-7440

Email: gabor@isis.vamderbilt.edu, URL: http://www.isis.vanderbilt.edu

Abstract - The sophisticated services provided by modern meas-
urement systems and complex instruments are implemented almost
exclusively in software. In fact, these instruments are Embedded
Information Systems where software components im,plement com-
plex functions and act as the system integrator. The development
of these software systems is crucial for achieving the desired qual-
ity and precision in a measurement system. In this paper, we pre-
sent an approach to the development of complex embedded soft-
ware systems through the use of generators. Software generators
are software engineering tools that translate high-level, domain-
specific models into executable systems. The key elements of this
technology are domain modeling and automatic code generation
resulting in the ability to reuse design solutions.

Kevwords - embedded information systems, embedded software,
software generators

dynamics. The problem is how to resolve the differences be-
tween the expected and the real dynamics of the embedded
system, and how the software design decisions have to be
changed to comply with the expected behavior.

As current software engineering techniques and tools do not
adequately address these needs, new solutions are necessary.
The requirements of embedded systems introduce new com-
plexities; developers need sound engineering principles, tech-
niques and tools for managing them. In this paper, we show
how our technology based on software generators - tools that
generate executable code from high-level, domain-specific
models - can support satisfying these requirements.

I. INTRODUCTION
11. BACKGROUND

The advanced capabilities of today’s measurement systems
are, to a large degree, due to information technology (IT).
However, the IT used in these systems is radically different
from the everyday IT of office software and the world wide
web: it is the IT of embedded information systems. In that
respect, it bears closer relationship to avionics software suites
of aircraft and real-time process control applications than
word processing. Similar to those embedded systems, the
expected quality and reliability of a measurement system is of
the utmost importance, and it may even be classified as
“high-consequence’’ in certain applications.

Embedded Information Systems (EIS) require rather sophisti-
cated software designs, as the software is in a ltight coupling
with its physical environment. The software of a measure-
ment system running on a particular hardware device controls
all the measurement processes, manages hardware resources,
and is responsible for the user interface, in addlition to being
forced to respond to real-time events under strict timing con-
straints.

There are also complex interactions between the behavior of
the software and its physical environment. The laws of phys-
ics and mathematics (especially the sampling theorem) de-
termine a dynamics what the external physical world expects
from an EIS. On the other hand, software design decisions,
like task allocation, scheduling policies, and word-length
choices influence the behavior of the software, and thus its

Although the dream of component-based software is more
than 40 years old, it has not been totally fulfilled. The lack of
progress is especially apparent in embedded software [2]. On
the other hand, component-based hardware is a reality since
modem manufacturing techniques have been applied in in-
dustry for a long time. One possible reason is that while
hardware components are very rigid and hard to change,
software components are “fluid” and modifiable (either
through an M I at run-time or in source code at design time).
The disadvantage of this tremendous flexibility is that it
works against large-scale reuse in practice.

Another reason might be the complexity of the behavior and
the interface of software components. Any hardware compo-
nent (e.g. a CPU) has a well-defined interface, which it is
“guaranteed” to comply with. The designers and manufactur-
ers monitor their production processes very carefully to en-
sure that no product is created that violates the constraints of
the interface. Software interfaces are much more complex
and much less well-defined than hardware interfaces. This is
especially true regarding the timing behavior of components.
For instance, very rarely does a software component docu-
mentation state that “this component, given any data as input,
will generate a correct output within 100 microseconds.”

A third reason might be difficulty to calculate emergent
properties of ensembles of software components. For
hardware components, the laws of physics applied by

’ The DARPA/ITO MOBIES program (F30602-00-1-0580) is supporting, in part, the activities described in this paper.

0-7803-6646-8/01/$10.00 02001 IEEE

1474

mailto:gabor@isis.vamderbilt.edu
http://www.isis.vanderbilt.edu

components, the laws of physics applied by electrical engi-
neering tell us, with a high degree of confidence, how a cir-
cuit will behave in a frequency domain. Given a set of soft-
ware components, it is a very difficult problem to calculate
the emergent timing properties of the ensemble from the
properties of the components.

All of these problems, component fluidity, behavioral and
interface complexity, and the lack of component calculus,
make the composition of embedded software systems ex-
tremely complex. The situation is exacerbated further by the
fact that most of the composition happens through the manual
editing of source code, where it is very hard to keep track of
component interactions. Although recent advances in visual
tools for software design and synthesis indicate some pro-
gress in the right direction, there is still plenty of room for
improvement.

111. THE GENERATIVE APPROACH

One technology that shows great promise in solving the com-
position problem for embedded information systems is the
use of software generators [8]. Generators are tools that syn-
thesize source code (or its equivalent, for instance an aug-
mented syntax tree that can be fed to a machine code genera-
tor) from some “high-level” input. The key difference be-
tween generators and language compilers is that generators
operate on domain-specific, possibly ad-hoc defined input,
while compilers operate on source code with well-defined
syntax and semantics.

We call the input of the generator a model to emphasize the
difference between it and source code in a programming lan-
guage. A model captures some relevant domain-specific in-
formation that directly determines and influences the output
of the generation. The model can be viewed as abstract de-
scription of the architecture of the embedded software, al-
though it may also include mathematical models of the physi-
cal components of the embedded system (e.g. the measure-
ment instrument), and the physical environment. It should be
noted, however, that models may include source code in
some programming language, that is “passed through” by the
generator to the final compiler.

We already do see the impact of generators on embedded
systems. Matlab [3], Matrix-X [4], “Software through Pic-
tures’’ [5] , and LabView [7] are just a few examples for gen-
erating code from high-level models, without having to deal
with the problem of software componentization mentioned
above. Many embedded applications have been successfully
developed using these tools. However, they achieve their
results by using limiting component interfaces and methods
of composition by predefining a small set of fixed “models of
computation” [2]. They do not support calculation of proper-
ties of ensembles of components. On the other hand, they do

show that the generator-based approach to embedded soft-
ware composition is a viable technology.

Generators are necessary for embedded software develop-
ment in order to be able to step beyond the level of complex-
ity manageable by current processes. The current state-of-the-
art is characterized by the use of design techniques (e.g. SDL
or UML) not always adequate for describing highly reactive
systems, middle-level programming languages (e.g. C or
C++), and debugging on the level of execution or below it
(e.g. by using logic analyzers). Programming languages (es-
pecially new, very high-level, domain-oriented languages) do
offer some help, but they are unable to address all the needs
of software composition alone. The main reason for it is that
developers invent (and use) novel ways of component com-
position. If the given language did not anticipate that style of
composition, then it usually becomes awkward to use. What
is needed is some “programmable compiler” allowing the
developer to express a composition style that becomes a first-
class concept of the language. Arguably, generators, and es-
pecially user-extensible generators, can support this activity.

To summarize, embedded software composition needs tool
support to manage the complexity arising during the devel-
opment, deployment and maintenance of the systems. Soft-
ware generators can fill an important role in these processes.

IV. GENERATORS

Generators of embedded software can solve the three prob-
lems mentioned above as follows.

1. Component fluidity: The generator can take the source
code of a fluid component and morph it to match the needs of
a particular application without human intervention. A com-
ponent can be coded in a highly parameterized way. If it is
composed of other components, the composition specifica-
tions may contain conditional expressions. A conditional ex-
pression encodes a design rule that instructs the generator to
emit different code depending on higher-level requirements.
For example, a conditional expression may choose between
two implementations of a lookup-table depending on the
number items expected to be looked up:

if sizeof(tab1e) < 8 then use(Array) else use(Hashtab1e)

Generators can determine the parameter values for the com-
ponents and adjust them accordingly at composition time.

2. Component integration: Provided a component is properly
described and a formal and symbolic model of it (of desired
quality) is available, the generator can detect mismatches
between component interfaces and behavior and either signal
an error for the developer or generate “glue-code” that
matches the components automatically. This automatic inser-

1475

tion of type-converters between components has been done
for simple data types in the past, but it can be extended to
behaviors as well. Of course, automatic type conversion may
introduce undesirable side effects (like possible constraint
violations on data), but a generator should be able to detect
this and give a warning to the developer to prepare for this
contingency.

3. Ensemble properties: A generator can be written such that
it has formal “knowledge” of the properties of the compo-
nents it is integrating. For instance, a generator may have a
formal description of the timing properties of a component. If
formal rules for calculations are also available, then the gen-
erator can calculate the emergent properties of the component
assemblies. For instance, if the worst-case run-time of a com-
ponent is known, then a generator can calcullate the worst-
case timing of a component ensemble provide:d all the com-
ponent communication patterns are also known. This latter
condition can be easily enforced by using a simple composi-
tion and scheduling technique (e.g. synchronous dataflow).
While the “general calculus” for component ensemble prop-
erties has not been fully developed yet, there are results
available for some specific cases (e.g. M A [9:1).

Software generators for embedded systems have to exhibit
some degree of flexibility. The rationale for this is that so-
phisticated designers tend to invent their own abstractions,
and wish to translate those into efficient code. If the abstrac-
tion is realized only as a certain coding pattern, it is almost
impossible to reuse it across different projects. A generator-
based approach can help in the sense that the designer can
augment the domain-specific language (DSI,) with a new
construct for the new abstraction, and determine its interpre-
tation by writing, modifying, or extending a generator such
that it “understands” the new construct. Thus, we envision
skilled designers extending the generators they use.

V. GENERATOR ARCHITECTURE

A generator is similar to a compiler, although simpler: it
rarely has to deal with optimizing executable code, for in-
stance. In the most generic sense, a software generator has
three parts: an input interface, a rewriting engine, and an out-
put interface. These parts form a pipeline as shown in Figure
2.

Similar to the pipeline structure of traditional compilers, the
input interface reads the models: formal descriptions, source
code or some other representation of components and com-
ponent assemblies, and builds an internal data structure that is
the input to the rewriting engine. The input interface corre-
sponds to the lexical and syntactical analyzer parts of a com-
piler. However, unlike compilers, the generators often use
graph-like data-structures directly (as opposed to text-based
input). For example, in the case of Matlab, the input to the

generator is a Simulink diagram consisting of a network of
blocks and connections and not textual source code.

The rewriting engine builds an “output” data structure that is
then traversed and “printed” in some form. The output of the
generator may be source code (e.g. C++ or Java), system con-
figuration files, or binary data. A key point of the generative
approach is that multiple outputs are derived from the same,
single input, thus their consistency is automatically enforced.
If a change is necessary, one needs to modify the input of the
generator (never the output!), and re-run it. --

Library of Components
(Source, Formal

Models, etc.)

Models of Component
Ensembles

Input Interface

Output Interface

System Code
(Source, Objects, etc.)

Figure 1. Generator Architecture

Naturally, the key to the generator is the rewriting engine.
This component performs a graph transformation on the input
data: the input model. It may involve calculating and validat-
ing properties of the ensembles being synthesized. There are
at least two approaches to implementing this rewriting en-
gine: (1) Define the rewriting actioqs in the form of “input
pattern to output pattern” mappings, and use a generic tra-
versal strategy (e.g. “apply patterns exhaustively”) to perform
the rewriting. This approach is very easy for the user who
wants to specify rewriting rules, but computationally may not
be efficient. (2) Define a specific traversal strategy for the
rewriting such that when visiting a node a portion of the out-

1476

put data model is created and connected to other parts of the
output. This approach requires lower-level coding than the
previous one, but the user has full control over traversal strat-
egy, thus, it is computationally more efficient.

We are working on an integration of the transformational and
operational approaches. By integration we mean that the
mapping is specified as an explicitly controlled transforma-
tion process interleaved with actions. Instead of giving ge-
neric rules for the transformation, we want to precisely con-
trol when and how the transformations are to be applied. If
necessary, a transformation can result in a “side effect” (i.e.
an action in terms of the output platform), but these actions
are explicitly marked as such. Note that the approach strikes a
balance between the fully formal representation of the map-
ping and the highly practical (but much less formal) opera-
tional view. Our goal is to develop a method that is formal
enough for analysis while practical enough for everyday use.

The salient properties of the approach can be described as
follows.

1. The traversal paths of the input are explicitly specified.
The traversal path (or sequence) describes the order in which
the nodes of the input graph should be visited. This descrip-
tion can be done using a method employed in Adaptive Pro-
gramming [I l l , in terms of node types and the “edges” (i.e.
class relations) the traversal should follow.

2. The transformational steps are explicitly specified and tied
to the traversal specifications. A transformation specifies how
a portion of the input graph (a “context”) is to be transformed
into a portion of the output graph. We will develop a method
for capturing the input context and for describing the con-
struction of the output data structure.

3. The transformation may result not only in a data structure,
but also in an action on the software platform. These actions
should be selected from the actions defined in the output
model. Because the output model includes pre- and post-
conditions for actions, these actions lend themselves to static
and dynamic verification. Static verification means that tra-
versal sequences are generated and the pre- and post-
conditions are verified for each action sequence. This static
analysis can possibly be performed using symbolic state-
space exploration techniques (e.g. model checking). Dynamic
verification means that pre- and post-conditions can be moni-
tored and checked during run-time. In case of a failure, an
error handling operation can be triggered.

This approach can be implemented using straightforward
procedural code. However, for convenience, a simple, do-
main-specific language to program the translator component
can be provided. This DSL is specifically tailored for the do-
main of generators and it can support the rapid prototyping,
and modification of the rewriting component.

VI. THETOOLS

We are working on a set of tools for building generators for
embedded systems [6] that can efficiently transform compo-
nents and their models, and models of component ensembles
into code for running systems. These tools will allow the easy
specification and customization of generators by sophisti-
cated end-users, who want to create and possibly reuse their
own generators, or any portion of them.

The tools are using a generator-based approach as well: the
generator component itself is generated from a formal model
of the input and output data models, and the mapping be-
tween the two. The figure below shows a notional architec-
ture for generating and using a generator.

Meta-Generation: Generator Generation Process
Generator Models

Descnbw Meta-Generator DeSvlbeS

I bomain Generation: System Generation Process Exe~ufes . J

Figure 2. Generator generation

We call the top, first stage the meta-generation: this is done
when the generator is built (or re-built). The second stage at
the bottom takes place when the generator is actually used by
the embedded system designer, and its task is to translate the
domain-specific models into platform-specific code. Obvi-
ously, the meta-generation is a rather infrequent process,
while the system generation is performed more often.

We use a technique called metamodeling for specifying com-
ponents of the generators. A meta-model is a description of a
modeling language, like the Backus-Naur Form is a descrip-
tion of a textual language. The difference is that the meta-
model can describe not only syntax, but also constraints: (1)
all the legal combinations of objects (i.e. an object “graph”),
and (2) other, non-structural constraints (e.g. “the sum of
these three attributes of an object should be equal to a con-
stant”). We use the industry-standard UML class diagrams
and OCL constraints [lo] as our metamodeling language.
These meta-models are used to describe the input and output
data models of the generator. These descriptions are then

1477

used by our tools to synthesize C++ object definitions that
allow easy access to the input models and the output data
structures. This techniques allows us to couple the generators
to arbitrary model repositories, for instance, eng;ineering da-
tabases, modeling tools, or XML files.

The mapping used on the generator can involve arbitrarily
complex computations to support flexible composition. The
mapping model will be expressed in another domain-specific
language tailored for expressing the main work of the genera-
tor: the rewriting of the input data-structures into the output.
The mapping model language will provide support for de-
scribing automatic or user-specified traversal strategies, with
the possibility of using constraints to guide the traversal or
perform multiple passes over the input data-structures. In our
experience, these techniques make the writing and modifica-
tion of translators a very rapid process. This approach will
also allow incremental operation such that a smidl change on
the input will result a small change in the output, an impor-
tant consideration for interactive development. We will also
attempt to create generators whose footprint and computa-
tional requirements make them suitable for embedded de-
ployment on the run-time system itself. This novel technique
offers new capabilities for embedded software where a run-
ning system can regenerate and modify its own component
architecture at run-time. The first results and the documenta-
tion of the project are available on our website [6] .

VII. THE MEASUREMENT SYSTEM CONNECTION

Modem measurement systems often require complex soft-
ware packages for implementing sophisticated services. The
software adds significant value to a system, and its quality is
crucial to the usability of the entire application. A significant
effort is required in developing this software, which is highly
specialized code for a highly specialized embledded system.
We argue that domain-specific languages will lhave a signifi-
cant impact on developing complex measurement systems.
The reason is that instrument designers are experts in instru-
ment design, not necessarily in software desig,n, and can be
much more productive using a domain-specific language
(DSL) than a procedural programming language. Designing
high-quality embedded information systems is a complex and
error-prone process. The use of DSL-s and software genera-
tors will help in putting the knowledge of the skilled embed-
ded system designers into an automated framework, and
make that knowledge available to measurement specialists.

VIII. CONCLUSIONS AND FUTURE WORK

The development of complex embedded information systems
used in complex measurement systems require sophisticated
and productive development practices. We argue that do-
main-specific modeling coupled with automatic software
generation technology can support this process. The domain-
specific models allow the system designers to focus on
metrological problems, while the software engineering
aspects of the work are addressed by the generators
themselves. We have presented a generic architecture for
software generators, and discussed our techniques for the
synthesis of generators. The use of automatic synthesis in
building a non-trivial, yet crucial, piece of software, the
generator, will allow sophisticated designers to extend its
capabilities and introduce new abstractions in the system.

We strongly believe that embedded system development and
system integration cannot be managed without the use of
automated generation techniques. Even now, major manufac-
turers building large-scale embedded systems do use genera-
tion technology, although it is often based on simple text ma-
nipulation. Further research and development is needed to
define new modeling paradigms and languages for embedded
systems, real-time software components and composition
techniques that support the designers. Furthermore, research
should target how generators can be made extensible, and
how complex analysis techniques can be coupled with gen-
erators to determine relevant properties of the generated sys-
tem.

REFERENCES

Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,”
IEEE Computer, pp. 110-1 12, April, 1997.
Edward Lee: “What’s Ahead for Embedded Software?,” IEEE Com-
puter, pp. 18-26, September, 2000.
http://www.mathworks.com/
http://www.isi.com/
http://www.aonix.coml
http://www.isis.vanderbilt.edu/Projects/mobies/default.ht~
http://www.ni.com/
Czamecki, K. Eisenecker, U: Generative Programming - Methods,
Tools, and Applications, Addison-Wesley, 2000.
Mark H. Klein, Thomas Ralya, Bill Pollak, Ray 0beni.a: A Practitio-
ner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems, Kluwer Academic Pub; 1993.
http://www.rational.com
Lieberherr,K.: Adaptive Object-Oriented Sojiware: The Demeter
Method with Propagation Pattems, Boston, MA, PWS Publishing
Company, 1996

1478

http://www.mathworks.com
http://www.isi.com
http://www.aonix.coml
http://www.ni.com
http://www.rational.com

